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A B S T R A C T   

This paper proposes a novel framework for generating synthesized PET images from MRIs to fill in missing PETs 
and help with Alzheimer’s disease (AD) diagnosis. This framework employs a 3D multi-scale image-to-image 
CycleGAN architecture for the end-to-end translation of MRI and PET domains together. A hybrid loss function is 
also proposed to enforce structural similarity while preserving voxel-wise similarity and avoiding blurry images. 
As shown by the quantitative and visual assessment of the synthesized PETs, this framework is superior to the 
state-of-the-art. Moreover, using these synthesized PETs helps improve the ternary classification of AD subjects 
(AD vs. MCI vs. NC). Specifically, assuming an extreme case where none of the subjects has a PET, feeding the 
classifier with MRIs and their corresponding synthetic PETs results in a more accurate diagnosis than feeding it 
with just available MRIs. Accordingly, the proposed framework can help improve AD diagnosis, which is the final 
goal of the current study. Ablation investigation of the proposed multi-scale framework as well as the proposed 
loss function, is also conducted to study their contribution to the quality of synthesized PETs. Furthermore, other 
factors, such as stopping criteria, the type of normalization layer, the activation function, and dropouts, are 
examined, concluding that the appropriate use of these factors can significantly improve the quality of synthe
sized PETs.   

1. Introduction 

Alzheimer’s Disease (AD), an irreversible neurodegenerative disease, 
is the leading cause of dementia, accounting for 70% of cases worldwide 
[1]. The prevalence of dementia is predicted to become triple by 2050 
[2,3]. So, diagnosing AD by investigating its biomarkers is of great in
terest. Among these biomarkers, the physiological changes traceable 
through different neuroimage modalities are frequently examined. 
Magnetic Resonance Imaging (MRI) and its variants, including Struc
tural MRI (sMRI) and functional MRI (fMRI), positron emission tomog
raphy (PET), and computerized tomography (CT) are the most common 
modalities utilized in this regard. PET is a functional imaging technique 
that provides a three-dimensional (3D) image at the molecular and 
cellular level, obtained by injecting a radio-tracer and computing a 
digital image with a scanner. A PET scan can often detect the abnormal 
metabolism of the tracer before the disease shows up on other imaging 
modalities [4]. 

The detection of early AD poses significant challenges, particularly in 
patients with mild cognitive impairment (MCI), where brain tissue ap
pears nearly identical to that of normal individuals. This similarity 
complicates diagnosis for clinicians, emphasizing the need for more 
accurate detection methods. Computer-aided diagnostic techniques can 
address this need, aiming to enhance early AD detection while reducing 
the burden on physicians. Traditionally, research in AD has relied on 
single-modal data, providing limited localized information on brain 
abnormalities. Compared to single-modal data, multi-modal data can 
provide more useful information for differentiation and greatly improve 
the accuracy of AD classification [5]. 

It has been indicated in the literature that utilizing the brain func
tional information provided by PET along with the structural informa
tion embedded in MRIs can improve AD diagnosis compared to solely 
using the MRIs [6–8]. However, PET is more expensive than MRI and 
often not available in many hospitals due to the high cost associated 
with multiple examinations, poorly equipped hospitals, and difficulties 
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in data collection [9]. Moreover, there is a growing concern regarding 
the potential radiation exposure associated with PET scans [10]. So, 
leveraging the more sensitive but less available PET to enhance AD 
diagnostic performance becomes challenging. 

The broad success of deep generative models has prompted the 
development of cross-modal medical image synthesis that can directly 
synthesize the missing modality from available one for downstream 
tasks [9]. Since their introduction in 2014 [11], generative adversarial 
networks (GANs) have gained significant attention, especially in medi
cal image-to-image translation. Specifically, by generating missing PET 
images from available patients’ MRIs using a GAN, the crucial gaps in 
multi-modal datasets can be filled, resulting in advancing AD diagnosis 
[5]. Consequently, we can take the advantages offered by PETs while 
avoiding the extra time, cost, and exposure of acquiring them. 

Synthetic PET is potentially useful for diagnosing degenerative dis
orders, such as AD, where grey matter atrophy, ventricular enlargement 
observed in MRI, and cerebral distribution of FDG in PET serve as crucial 
differentiating factors [12]. In a study conducted in [13], two experi
enced clinicians with 6 and 20 years of clinical neurology experience 
were asked to check a set of 100 images from 100 subjects in the test 
data, with an equal split between real and synthetic PETs generated 
based on the corresponding subjects’ MRI and determine whether they 
believed the image was real or synthetic. According to the provided 
results, the clinicians had similar performance and could not tell the 
difference between the real and synthetic PETs. 

Translating an MRI as a structural modality to PET which is a func
tional one is a challenging task and compared to translation tasks 
involving other modalities, such as CT, receives less attention. Based on 
recent surveys on medical image translation studies, the number of 
reviewed papers that investigated MRI to PET translation is significantly 
less than the number that investigated other modalities together. For 
instance, in a survey of 103 studies conducted by McNaughton et al. 
[14], only three studies were dedicated to PET generation from MRIs. 
Similarly, in the most recent survey on GAN-based generation of realistic 
3D volumetric data by Ferreira et al. [15], only four out of 73 included 
studies focused on MRI to PET translation. 

To address the challenges of MRI-to-PET translation within an end- 
to-end architecture, particularly for 3D images with their added 
computational complexity, various approaches have been explored in 
the literature. Employing low-dose PETs to provide some functional 
information helping better full-dose PET generation [16], simultaneous 
use of several MRI modalities as input to the framework [17], utilizing 
multi-modal or multi-scale inputs [18,19], focusing on some regions 
known to contribute more in AD diagnosis [20] and modifying the loss 
function to better guide the deep framework toward generating high- 
quality PETs [6] are some attempts to deal with this challenge. The 
current study approaches this task by proposing a 3D image-to-image 
CycleGAN network for an end-to-end translation of MRI to PET. The 
main contributions of the current study are as follows:  

• Novel 3D Multi-Scale Image-to-Image Translation Network We 
introduce a novel approach for translating MRI to PET scans using a 
3D multi-scale framework. Unlike conventional methods, our 
framework leverages multiple scales of the input image by employ
ing some scale blocks. These blocks prepare the input at different 
resolutions, facilitating more effective information extraction during 
both the encoding and decoding stages. Additionally, we integrate a 
multi-scale discriminator, mirroring the encoder part of the gener
ator, to force a balanced competition within the CycleGAN frame
work, resulting in higher-quality PETs. This framework significantly 
enhances the mapping between MRI and PET domains, yielding su
perior translation results compared to the state-of-the-art.  

• Hybrid Loss Function for Improved PET Generation We propose a 
hybrid loss function designed to enforce the generation of PET scans, 
ensuring closer resemblance to ground truth images. This loss func
tion supplements the conventional CycleGAN generator’s loss terms 

– adversarial loss, cycle-consistency loss, and identity loss. It com
prises a weighted combination of L1, L2, and Multi-Scale Structural 
Similarity Measure (MS-SSIM) terms, preserving both voxel-wise and 
structural similarities. By integrating these components, we mitigate 
the risk of producing blurry images while ensuring the generation of 
realistic synthetic PETs resembling the real ones. 

Furthermore, our study includes an extensive evaluation of various 
methodological aspects, including the impact of multi-scale inputs 
versus single-scale ones and the utilization of CycleGAN versus basic 
GAN architectures. Through an ablation study, we elucidate the con
tributions of each component to the quality of synthesized PETs. Besides, 
we investigate the effectiveness of our proposed loss function in 
enhancing PET quality compared to traditional loss terms for Cycle
GANs. We extend our analysis to practical applications in AD diagnosis, 
exploring the potential of generated PETs to fill missing data for subjects 
lacking PET scans in their medical records. Additionally, we conduct 
several comparisons and statistical tests to assess the influence of factors 
such as stopping criteria, normalization methods, activation functions, 
and dropout application on the quality of generated PET scans. 

This paper is organized as follows. Section 2 provides a short review 
of the related literature and explains how the current study will fill the 
gap in the literature. Section 3 presents the proposed framework and loss 
function. Section 4 describes the utilized data and experimental details 
we will employ. Assessing the synthesized PETs, quantitatively and 
visually, and their contribution to AD diagnosis is also investigated in 
this section. An ablation study of the proposed framework and loss 
function as well as some numerical comparison regarding other com
ponents of the proposed framework, is provided in section 5. Finally, 
section 6 concludes the current study. 

2. Literature review 

GANs have found various applications in the field of medical image 
literature. [21] presents a systematic review of GANs for medical image 
classification and segmentation, while [22] provides a comprehensive 
review of different GAN architectures for medical image synthesis and 
segmentation. Other applications of GANs in medical imaging include 
data augmentation [23], medical image denoising [24], synthesizing 
high-resolution image modalities from low-resolution ones [25,26], and 
image-to-image translation of different types of PET obtained by 
different radio-tracers, as well as converting low-dose PETs to high-dose 
ones [27,28]. However, cross-modality image generation is the most 
notable application of GANs in medical imaging. Image-to-image 
translation of MRI to CT [29], CT to MRI [30], MRI and CT cyclic 
translation [31], MRI to PET [32], CT to PET [33,34] are some examples 
in this regard. 

Since the introduction of GANs in [11], different variations of GAN 
architectures have been developed in the literature. Conditional GAN 
[35], image-to-image translation GAN [36], and Cycle GAN [37] are 
some of the most frequently used architectures. A review of the GAN 
variants adopted for medical imaging applications can be found in [22]. 

In addition to focusing on different GAN architectures employed in 
the literature, the supported dimensionality of these GANs should also 
be considered, i.e., adopting two-dimensional (2D) GANs for working on 
some slices of the image or synthesizing a whole modality by a 3D GAN. 
In the literature, several studies have utilized 2D GANs for image-to- 
image translation. Focusing on AD, here some studies are mentioned. 
In [33], a 2D cross-modality image generation for synthesizing PETs 
from CTs has been examined in a two-step procedure where initially, a 
PET-like image is generated by a Convolutional Neural Network (CNN). 
At the same time, a conditional GAN will refine it to generate a PET scan 
of the liver lesion. Most recently, a 2D GAN-based framework was pro
posed in [38] to translate one MRI type to another one, including T1- 
weighted, T2-weighted, T1-weighted post-contrast enhancement 
(T1c), and flow-sensitive alternating inversion recovery (FAIR). This 
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framework consists of a three-part generator and two discriminators. 
The first part of the generator initially generates a pseudo-target image, 
while the second and third contribute to making it better and generating 
the final target image. Some other 2D generators can be found in 
[39,40]. 

2D-based methods often have spatial discontinuities and feature in
consistencies in medical image generation. On the other hand, while 3D 
generative models are not prone to be affected by these issues, they 
require considerable training time due to numerous parameters, feature 
size, and model complexity [41]. In [42], to overcome the difficulties of 
employing 3D GANs, three 2D generators are responsible for generating 
feature maps of coronal, axial, and sagittal slices from a 3D PET which 
are then fused to construct a 3D MRI. Another paper trying to avoid the 
discontinuity of 2D slices and benefit from some advantages of 3D whole 
images can be found in [43]. In this study, four adjacent MRI slices are 
fed into a cycle GAN to generate the corresponding slices of the CT, 
which are subsequently recombined to synthesize the whole CT. To 
manage the computational cost of 3D GANs, utilizing cascade GANs was 
proposed in [44] to generate high-resolution images from the low- 
resolution ones where the proposed framework gradually increases the 
resolution. In [41], a combined 2D and 3D GAN framework is proposed 
to synthesize high-quality MRIs from low-quality ones. In this study, a 
2D generator is in charge of generating 2D slices. In addition to passing a 
2D discriminator, these slices will then compose a 3D image to be fed 
into a 3D discriminator. Another study combining 2D and 3D GAN is 
[45], where 2D high-quality slices are employed to generate high- 
quality 3D ultrasound images using a CycleGAN. 

Translating a structural image modality to a functional one, such as 
synthesizing PETs from the corresponding MRIs, can be challenging. An 
instance of using a 3D GAN to generate high-dose PET scans by merging 
feature maps from low-dose PET and three MRI modalities is demon
strated in [16]. By incorporating functional information from low-dose 
PET and structural information from MRI, this approach can poten
tially address the challenge of converting structural image modalities to 
functional ones. Utilizing ultra-low-dose PET and two MRI modalities as 
inputs to a standard-dose PET generator is another example in this re
gard investigated in [46]. Similarly, [47] employed a fusion network to 
create a fused image from low-dose PET and MRI, which is then used as 
the input to a GAN for synthesizing 3D high-dose PET. In a recent study, 
a Transformer-GAN was proposed for standard-dose PET generation, 
with MRI and low-dose PET serving as inputs to this framework [48]. 

Other studies in the literature also explore the generation of PET 
scans from MRIs. For instance, in [17] a classifier is jointly trained by 
utilizing some shared features from the encoder and decoder parts of the 
generator. However, the information on the similarity assessment of the 
synthesized PETs regarding the original PETs is limited. Another study 
on generating synthetic PET from MRI is [32], which proposes a GAN 
with two generator modules. The first module takes a whole MRI as 
input to generate a whole PET, while the second module consists of 
independent generators working on separate patches of the input MRI to 
generate corresponding patches of PET. The output of these modules is 
concatenated and then passed through some additional layers for fusion. 
Although training such parallel generators can be computationally 
expensive, they can capture both local and global information for better 
image translation. Another relevant study is [20], which introduced a 
reversible GAN capable of converting MRIs to PETs and vice versa. 
Unlike a Cycle GAN, which uses two generators as in [49], the proposed 
reversible GAN uses a single generator with a reversible block in the 
middle to enable bidirectional conversions. As another example, a two- 
step approach using two 3D GANs was employed in [50] to generate 
PETs from MRIs, which involved sketching and refining the synthesized 
images. Another paper, [51], utilized a 3D basic GAN to generate PET 
scans from MRIs. 

Adding an extra encoder network in addition to the generator and 
discriminator was considered in [52] where this encoder contributes to 
the introduced bidirectional mapping mechanism responsible for 

embedding the semantic information of PET images for better preserving 
the diverse details of brain structures in synthetic PET images. In a most 
recent study, a 3D UNet-like network incorporating a self-attentive 
module was proposed for MRI to PET translation. The aim is to 
generate synthetic PET images, which, when combined with patients’ 
MRIs, could enhance AD diagnosis [5]. Another instance of PET gener
ation from MRI to improve AD diagnosis can be found in [9] where a 
joint learning framework of cross-modal synthesis and diagnosis is 
proposed. 

The current study aims to contribute to the literature on MRI to PET 
image-to-image translation using the GAN framework, where a gap was 
identified. Specifically, in [16,47,48], low-dose PETs were in charge of 
providing some brain functional information for generating full-dose 
PETs, while in the current study, a single structural MRI will be used 
as the framework’s input. Considering a single MRI modality is also 
opposed to [18,50,53] where four, two, and eight different contrast MRI 
modalities are used simultaneously for PET generation, respectively. On 
the other hand, the focus of PET generation in [5,17,49] is on the clas
sification accuracy of AD subjects. The generated PETs are not assessed 
based on the common quality metrics for image synthesis. The current 
study, however, will do a comprehensive investigation on the quality of 
synthesized PETs as well as utilizing them for AD diagnosis. The pro
posed GAN in [20] mainly focuses on hippocampus region reversible 
MRI and PET generation, although full image generation is also 
considered for comparison. Joint MRI-PET translation and AD diagnosis 
where subjects’ labels and a corresponding loss are incorporated in the 
framework proposed in [9] is opposed to our architecture that does not 
take the advantages of subjects’ labels in PET generation. 

The proposed GAN framework in [32] is in line with the aim of our 
study. It has global and some local or region of interest (ROI)-based 
generators, which makes it computationally expensive. However, in the 
current study, employing different scales of the input MRI does not 
drastically impact the computational cost of the framework. Moreover, 
the proposed GAN framework in [32] needs to determine the optimal 
number of ROIs. This number may differ depending on the dataset and 
the intensity distribution of the images. On the contrary, assessing how 
many downscalings should be performed in the current proposed 
framework is unnecessary. 

Besides, in addition to the general complexities of the medical im
ages, including class imbalance and data scarcity [54], translating 
structural features to functional ones can result in more complexity, 
which needs a more cautious training of the framework. Therefore, 
modifying the loss function to guide the deep framework toward better 
image-to-image translation for medical applications is a common prac
tice in the literature. In a recent study [19], a manifold projection 
operator and a corresponding generator loss are proposed to project the 
actual data distribution and the generator distribution into the low- 
dimensional subspace to prevent mode collapse that might happen in 
GAN architectures. As in some other instances, a hybrid loss combining 
3D gradient profile loss, SSIM, adversarial loss, Kullback–Leibler 
divergence constraint, and L1 loss was considered in [6], or in [42] a loss 
function including Jensen Shannon distance (JSD) and L2 loss was 
employed. Adding an MSE loss to other standard terms of GAN loss [55], 
a hybrid loss of MS-SSIM, L1, and an ROI-based loss [32], and a 
weighted average of the employed losses in the proposed subnetworks in 
[17] are some other examples in this regard. In order to preserve the 
structural similarity while preserving the voxel-wise similarity and 
avoiding generating blurry images, the current study will propose a 
hybrid loss function having a similarity loss term in addition to what is 
common in the literature for CycleGANs. 

3. Methodology 

3.1. Proposed multi-scale CycleGAN framework 

In this study, a GAN framework consisting of two similar generators 
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and two similar discriminators is employed as depicted in Fig. 1. The 
generator network comprises convolutional encoder and decoder parts 
in a UNet-like architecture. The UNet model is a successful architecture 
commonly used in medical image segmentation and generation due to 
its encoder-decoder structure and skip connections [56,57]. It extracts 
image features using downsampling convolutions in the encoder part 
and recovers the image to its original size using the decoder. The skip 
connection combines low-level and high-level features to provide better 
target output. However, the UNet model has some limitations, such as 
inflexibility in training with different size input images and incomplete 
feature exploitation [58]. In the literature, especially for image seg
mentation, redesigning skip connections and adding more connections 
between the encoder and decoder parts [59,60] or cascading UNets [61] 
or modifying the convolutional blocks [62] are investigated to help 
better exploiting image features. 

The proposed approach in this study involves a multi-scale UNet 
architecture, where the downsampling steps of the encoder will receive 

input from different scales of the input modality. The benefit of using 
this multi-scale input is the integration of information from input images 
at various scales to help better recover the low-level information, which 
is prone to be lost during the downsampling convolutions in the encoder 
part [58]. The proposed generator is indicated in Fig. 2. In this network, 
the size of the first input MRI is 64× 64× 64. For down-scaling this MRI 
by half, we employed trilinear interpolation with a scale factor equal to 
0.5. Then, to prepare it for the summation with the output of the upper 
convolution layer, a 3D scale block is designed. 

Despite the potential advantages of stacking several convolution 
layers with an incrementally increasing number of filters for better 
mapping the features, considerable computational and memory re
quirements will be challenging [63,64]. In the current study, where two 
3D deep networks compete against each other, managing the compu
tational cost is crucial. Accordingly, we employed convolution blocks 
consisting of two consecutive convolution layers. The first layer is a 
convolution operation with a kernel size of 3 × 3 × 3 where the number 

Fig. 1. Overview of the CycleGAN framework for MRI to PET translation.  

Fig. 2. Proposed 3D Multi-scale generator network (MultiG).  
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of its output filters is twice the input ones. We use the same kernel for the 
second layer but do not double the number of filters. So, without a 
drastic change in the number of parameters, we can benefit from an 
extra convolution operation. 

Similar to some very recent studies [6,17], we used instance 
normalization instead of batch normalization in the proposed convolu
tion blocks. After passing the normalized features to the activation 
function, we applied dropout to avoid over-fitting issues that frequently 
happen in deep architectures. Fig. 2 illustrates the scale block’s com
ponents. For the discriminator, we employed a similar network to the 
down-sampling part of the generator. This similarity is supposed to help 
reach a more balanced game between the generator and discriminator in 
the proposed GAN framework. The implemented discriminator network 
is illustrated in Fig. 3. We embed the proposed generator and discrimi
nator networks in a CycleGAN framework, which will be mentioned as 
CycleGAN-MultiG in the current study. So, CycleGAN-MultiG contains 
two generators to map MRI to PET and PET to MRI. Accordingly, this 
architecture has two discriminators: one for distinguishing between 
ground truth and synthesized PETs and the other for discriminating the 
real and synthesized MRIs. 

3.2. Proposed loss function 

For a CycleGAN, a combined loss function was introduced in [37] to 
enforce the generation of more realistic and similar images. This loss 
function comprises three individual losses: adversarial, cycle- 
consistency, and identity loss. Following a short description and their 
corresponding terms are provided. 

Adversarial Loss: The adversarial loss function is designed to 
minimize the difference between the generated and the real images, 
making the generated images indistinguishable from the ground truth. 
The mathematical term for the adversarial loss is the sum of the negative 
log-likelihoods of the real and synthesized images as given in eq. 1 for 
generating and discriminating PETs. 

LAdv(GPET,DPET) = −
1
N

∑N

i=1
log(DPET(PET) )+ log(1 − DPET(GPET(MRI) ) )

(1)  

where GPET is the PET generator from MRI and DPET is the PET 
discriminator. A similar term should also be considered for minimizing 
adversarial loss for the pair of MRI’s generator and discriminator. 

Cycle Consistency Loss: Cycle consistency loss ensures that if an 
image from one domain is translated to another and then returned to the 
original domain, it remains similar to the original image. So, the aim is 
to minimize the difference between the original and generated images 
after these two translations. The regarding loss term for translating MRI 
and PET domains to each other is given in eq. 2. 

LCycle(GPET,GMRI) =‖ GPET(GMRI(PET) ) − PET‖1 +

‖ GMRI(GPET(MRI) ) − MRI‖1 (2)  

where GPET is the PET generator from MRI and GMRI is the generator for 
translating PET to MRI. In the equation, instead of the employed L1 
distance, L2 can also be employed. 

Identity Loss: Identity loss is used to preserve the identity of the 
input image in the output image during the training of the generators to 
ensure that the generator produces images similar to the input rather 
than producing quite new and different images. The corresponding loss 
term for the PET generator is presented in the following equation. 

LId(GPET) =‖ GPET(PET) − PET‖1 (3) 

Similarly, the MRI generator’s identity loss term would be: 

LId(GMRI) =‖ GMRI(MRI) − MRI‖1 (4) 

However, due to the challenges of cross-modality image synthesis 
task, from a structural scan to a functional one [32], we hypothesize that 
incorporating an additional term to the standard losses used in a 
CycleGAN could enhance the quality of synthesized PET images and 

Fig. 3. Proposed 3D Multi-scale discriminator network.  
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improve the values of similarity metrics. As a result, we propose to add 
an extra loss term that will assess the similarity between the synthesized 
PET images and their respective targets. 

The use of various loss functions to measure the dissimilarity be
tween the ground truth image and a synthesized image has been 
explored in the literature. Most of these loss functions are either pixel or 
voxel-wise, used to quantify the pixel or voxel level discrepancy. Mean 
absolute error (MAE) and mean square error (MSE), also called L1 and 
L2 distances, are commonly employed in image reconstruction appli
cations. However, it has been established that these standard measures 
do not always align with human perceptions of quality [65] and may 
result in a synthesized image that appears blurry [24]. So, in some 
studies in the literature, utilizing multi-scale structural similarity mea
sure (MS-SSIM) was proposed to overcome this challenge [24,32,65]. 
Moreover, due to the multi-scale nature of MS-SSIM, it can better cap
ture the strong feature correlations in medical images than mean-based 
methods [24]. Since MS-SSIM, given in eq. 5, is differentiable, it can be 
easily employed for gradient-descent-based learning.  

where I, C, and S are luminance, contrast, and structure terms illustrated 
in eq. 6, 7, and 8, respectively; M is the employed scale for iteratively 
down-sampling x and y by a factor of 2. α, β, and γ adjust the relative 
importance of these terms which are usually set to 1 [66]. 

I(x, y) =
2μxμy + C1

μ2
x + μ2

y + C1
(6)  

C(x, y) =
2σxσy + C2

σ2
x + σ2

y + C2
(7)  

S(x, y) =
σxy + C3

σxσy + C3
(8)  

where μx and σx are the mean and the variance of x, while σxy refers to 
the covariance of x and y. In these equations, C1, C2, and C3 are small 
constants. 

This study proposes to use a hybrid similarity loss as given in eq. 9. 
By adding two voxel-wise losses in addition to LMS-SSIM and tuning their 
relative weights (λMAE, λMSE, and λMS-SSIM), we hypothesized that the 
network would be forced to generate more realistic and indistinguish
able images. Then, this similarity loss will incorporate along with cycle 
consistency, identity, and adversarial losses in the total loss term of the 
PET generator as mentioned in eq. 10. The proposed framework also 
uses a similar loss term for the MRI generator. 

LSim(GPET) = λMAE × LMAE(GPET)+ λMSE ×LMSE(GPET)

+λMS-SSIM ×LMS-SSIM(GPET)
(9) 

In general, Big-O notation is frequently employed. Big-O character

izes the worst-case scenario and provides insights into the execution 
time or space requirements, such as memory usage or disk space, for a 
given function or algorithm [67]. To examine the computational 
complexity of the proposed similarity loss, MSE, MAE, and MS-SSIM 
should be individually investigated. The corresponding computations 
of MSE and MAE are very similar, each having a computational 
complexity typically considered O(n), where n represents the input data 
size (length x height x width). So, their computational cost will grow 
linearly based on the input data size. For MS-SSIM, the computational 
complexity is O(kn), where k is the number of utilized downsampling 
scales in the MS-SSIM calculation. In the current study, the value of k is 
set to 4, following the literature [68]. Therefore, MS-SSIM also exhibits a 
linear computational complexity. So, for the proposed similarity loss, a 

Fig. 4. Overview of the proposed losses in the proposed CycleGAN framework for MRI to PET translation.  

LMS-SSIM(GPET) = 1 − IM(GPET(MRI) ,PET)αM
∏M

j=1
Cj(GPET(MRI) ,PET)βjSj(GPET(MRI) ,PET)γj (5)   
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weighted summation of MSE, MAE, and MS-SSIM, the overall compu
tational complexity remains linear, ensuring a modest impact on the 
computational cost of the proposed framework. 

Accordingly, the new term for PET generator loss will be as eq. 10, 
where WSim, WCycle, WId, and WAdv are the corresponding weights of 
similarity, cycle, identity, and adversarial losses, respectively. Fig. 4 il
lustrates all the considered losses in the proposed CycleGAN. 

L(GPET) = WSimLSim(GPET)+WCycleLCycle(GPET,GMRI)

+WIdLId(GPET)+WAdvLAdv(GPET,DPET)
(10)  

4. Experiments and results 

4.1. Data acquisition and preprocessing 

Our study is based on a popular AD dataset which is one of the few 
publicly available AD datasets and has been previously used in various 
other works. The Alzheimer’s Disease Neuroimaging Initiative (ADNI)1 

is a longitudinal multi-center study designed to develop clinical, imag
ing, genetic, and biochemical biomarkers for the early detection and 
tracking of AD. There are three groups of imaging modalities in the 
ADNI dataset. Structural MRIs, including T1-weighted, T2-weighted, 
and Fluid-attenuated inversion recovery (FLAIR), functional MRIs taken 
in the resting state, and two types of PETs, including Amyloid and Flu
orodeoxyglucose (FDG) ones. 

Among the available neuroimages in the ADNI dataset, a pair of 
baseline MRI and PET are selected for those subjects having them at the 
baseline. These subjects are labeled based on their conversion in 36 
months, similar to [69]. Patients who stay normal control (NC) and AD 
during the follow-up are labeled NC and AD, respectively. For mild 
cognitive impairment (MCI), different types of cognitive impairment, 
such as late MCI and early MCI, are labeled as MCI. Moreover, if a 
subject’s label is NC (normal control) and in 36-month screening turns 
into MCI or AD, the considered label would be MCI or AD, respectively. 
Subjects initially diagnosed as AD or MCI and then converted to NC in 
the 36th month were excluded. 

To shorten the preprocessing steps, we download those scans that 
have undergone the maximum level of correction from the ADNI web
site. These images have been passed through grad-warping and intensity 
correction steps and have been scaled for gradient drift using the 
phantom data. Moreover, for skull-stripping of sMRIs, we applied the 
brain extraction (BET) package of FSL library.2 Then, for linear MRI 
registration to the Montreal Neurological Institute (MNI) template, we 
use the FreeSurfer package.3 Afterward, each PET was registered to the 
same patient’s MRI using FreeSurfer linear registration. Then, we resize 
all MRIs and PETs to 64 × 64 × 64 using tensor interpolation of Pytorch 
to reduce the computational cost. 

After excluding all the mislabeled patients and those having mis
registered images, in total, 282 subjects remained to be studied in this 
paper. Table 1 provides a summary of these subjects, their diagnosis 
label, as well as their age and Mini-Mental State Examination (MMSE) 
score. MMSE is a known cognitive test for investigating the orientation 
to time and place, the immediate and delayed recall of three words, the 

attention and calculations, language, and visuoconstructional functions 
[70]. Despite the extensive application of MMSE in clinical application 
due to its correlation with cognitive decline due to AD, it may add 
confounding information to the diagnosis procedure [71]. However, 
combined with other AD biomarkers, MMSE can help more accurate 
diagnosis. 

To have a completely unseen test set, 10% of the subjects were 
randomly selected, and the remaining 254 subjects were utilized for 
training and validation in a five-fold cross-validation setting. For data 
augmentation, blurring data by Gaussian filters was used, i.e., after 
putting the test set aside, the training set was tripled using Gaussian 
filters by a Sigma randomly picked between 0 and 1.5. Scipy,4 an open- 
source Python library, was used for applying these filters. 

4.2. Implementation details 

Pytorch was utilized on an NVIDIA GeForce RTX3090 GPU to train 
all the proposed networks. Adam optimizer with an initial learning rate 
of 5e-4 was adopted for GAN frameworks’ training, while a step 
scheduler decays the learning rate every 50 epochs by half. We 
considered a batch size of 4 for the GANs. Parametric ReLU was applied 
(PReLU) as the activation function of all layers except the generator’s 
last layer, for which we employed Sigmoid to get an output PET whose 
voxel intensities are between zero and one. Based on several experi
ments we conducted, the best combination of weights for LSim in the 
current study is 1, 1, and 100 for LMAE, LMS-SSIM, and LMSE, respectively. 
Moreover, the corresponding weights of LSim, LCycle, LId, and LAdv were 
set to 100, 10, 10, and 1, respectively. For BasicGAN, the same weights 
were used, except WCycle and WId, which are excluded from the gener
ator’s loss. 

Assessing the quality of synthesized images has always been 
controversial. For non-medical applications, a visual inspection can 
provide good information at a glance. However, it is more complicated 
for medical applications. The human eye cannot be guaranteed to 
distinguish distortions and unusual patterns, even if the synthesized 
images are inspected by specialists [72]. On the other hand, there are 
different similarity measures in the literature to assess the quality of 
synthesized images. However, it is hard to pick one of them as the pri
mary measure to choose the best generative network. This study con
siders three similarity measures to quantify the quality of the generated 
PETs. These measures are Peak-Signal-Noise-Ratio (PSNR), Structural 
Similarity Measure (SSIM), and Mean Absolute Error (MAE), which are 
frequently utilized in the literature [33,40]. The corresponding equa
tions of these measures are as follows: Real refers to the ground truth 
image, and Fake refers to the generated image by feeding the real image 
into the framework. It is worth mentioning that MAE is a scale- 
dependent measure. So, the scale of the intensities of real and fake 
PETs should be the same. 

MAE(real, fake) =
1
N

∑N

i=1
∣real(i) − fake(i)∣ (11)  

PSNR(real, fake) = 20 log10
MaxIntensity

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
MSE(real, fake)

√ (12)  

where MSE is the mean squared error between the real and fake PETs 
and MaxIntensity stands for the maximum possible intensity for a voxel in 
the real or generated image. In this study, all the images are scaled 
between zero and one before passing through the GAN network. More
over, the activation function of the last layer of GAN is Sigmoid, and its 
output ranges between zero and one. So, we set the value of MaxIntensity 

equal to one. The value of the SSIM measure is a number between − 1 
and 1, where 1 shows ideal similarity, 0 means no similarity, and in the 

Table 1 
Demographic and MMSE score of the included subjects in this study.  

Diagnosis No. of Subjects Age (mean ± std) MMSE (mean ± std) 

CN 80 75.56 ± 4.72 28.91 ± 1.13 
MCI 129 75.17 ± 7.37 27.13 ± 1.70 
AD 73 75.24 ± 7.32 23.52 ± 2.15  

1 https://adni.loni.usc.edu/  
2 https://fsl.fmrib.ox.ac.uk/fsl/fslwiki  
3 https://surfer.nmr.mgh.harvard.edu/ 4 https://scipy.org/ 
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case of a perfect anti-correlation, this value will be − 1. 

SSIM(real, fake) = I(real, fake)αC(real, fake)βS(real, fake)γ (13)  

4.3. Image quality assessment 

This section is dedicated to assessing the quality of synthesized PETs 
using CycleGAN-MultiG. Beforehand, to assess the learning trajectory of 
the proposed framework and its generalization ability to new instances, 
the convergence dynamics of the generator’s loss and the generator’s 
similarity loss over training epochs should be carefully monitored and 
evaluated to ensure robust performance. Fig. 5 illustrates the training 
and validation curves for one of the cross-validation folds, revealing a 
stable convergence without significant divergence or over-fitting. The 
observed fluctuations and minor peaks in these curves can be attributed 
to dynamic adjustments made by the learning rate scheduler during 
training. It’s important to note that, due to computational constraints, 
early stopping was implemented before achieving a perfectly smooth 
curve, maintaining a balance between computational efficiency and 
satisfactory model convergence given our resource limitations. 

This section assesses the quality of synthesized PETs by employing 
different similarity measures and providing some visual inspections. For 

comparison purposes, since the only available source code among all the 
reviewed papers focusing on MRI to PET translation is the JSRL frame
work introduced in [17], we used this architecture as a basis for com
parison. Moreover, we have implemented the Pyramid-Attentive GAN 
(PA-Net) architecture as described in [5], which represents the most 
recent published study in the literature. In this study, the number of 
channels for different layers of the generator is not mentioned. So, we 
assumed that the mentioned number of channels for the discriminator is 
also valid for the generator. To ensure a fair comparison, we replaced 
our proposed network with JSRL and PA-Net, feeding them with our 
data, and keeping all other hyperparameters consistent with our 
framework. We conducted the experiment with the JSRL and PA-Net 
frameworks twice and collected the numerical results. 

Besides, we use the numerical results of implemented GANs in [6] 
due to a similar dataset structure and image preprocessing to our study. 
These architectures are FCN [73], UNet [56], Pix2Pix [36], BicycleGAN 
[74], and BPGAN [6]. These results, along with the obtained mean value 
of JSRL [17], PA-Net [5], and our proposed framework, CycleGAN- 
MultiG, are given in Table 2. 

Regarding the numerical results given in Table 2, employing JSRL 
and PA-Net for our data resulted in similar outcomes. Notably, PA-Net 
exhibited better performance in terms of PSNR and MAE metrics, 
while JSRL demonstrated higher SSIM. Meanwhile, CycleGAN-MultiG 
outperforms JSRL and PA-Net, the most recently introduced image-to- 

Fig. 5. The convergence dynamics of CycleGAN-MultiG’s loss over training epochs.  

Table 2 
Quality comparison of the synthesized PETs using different architectures (best in 
bold).  

Method PSNR SSIM MAE 

FCN [73] 22.89 0.5838 0.0516 
UNet [56] 22.92 0.6343 0.0517 
Pix2Pix [36] 22.93 0.6061 0.0514 
BicycleGAN [74] 24.84 0.6503 0.0409 
BPGAN [6] 25.08 0.6646 0.0396 
JSRL [17] 26.25 0.7709 0.0304 
PA-Net [5] 26.41 0.7689 0.0293 
CycleGAN-MultiG 27.25 0.7997 0.02791  

Table 3 
P-values for testing the hypothesis of the superior performance of CycleGAN- 
MultiG over JSRL and PA-Net.  

Similarity 
Measure 

H0: CycleGAN-MultiG equals 
JSRL H1: CycleGAN-MultiG 
Better than JSRL 

H0: CycleGAN-MultiG equals 
PA-Net H1: CycleGAN-MultiG 
Better than PA-Net 

PSNR 9.765e-3 1.102e-2 
SSIM 6.367e-4 2.247e-4 
MAE 2.984e-4 9.653e-4  
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image translation architectures for PET generation from MRIs, across all 
investigated similarity metrics. Specifically, CycleGAN-MultiG achieves 
a mean PSNR value that is 3.8% and 3.1% higher than JSRL and PA-Net, 
respectively. Additionally, for SSIM, there is an increase of 3.7% and 
3.8% from 0.7709 and 0.7689 to 0.7997, respectively. Moreover, 
CycleGAN-MultiG results in a decrease in the mean MAE value from 
0.0304 and 0.0293 to 0.02791, representing reductions of 8.19% and 
4.78%, respectively, for this metric. 

However, to check for a statistically significant difference between 
CycleGAN-MultiG and JSRL as well as CycleGAN-MultiG and PA-Net, we 
used Wilcoxon rank-signed test [75]. The corresponding p-values of 
these two-sided non-parametric tests for this comparison are given in 
Table 3. According to this table, for all similarity measures (PSNR, SSIM, 
and MAE), we can reject the null hypothesis at a confidence level of 5%, 
confirming the proposed framework’s superior performance over state- 
of-the-art architectures for 3D image-to-image translation of MRI to PET. 

In addition to numerically comparing the quality of synthesized 
PETs, a visual assessment of the generated images can help illustrate 
how similar these images are to the ground truth. Accordingly, two 
subjects from the test set are considered the ground truth. Then, we use 
the trained CycleGAN-MultiG framework to generate their correspond
ing synthesized PETs. For comparison purposes, the corresponding 
generated PETs by the trained JSRL [17] for these subjects are also 
considered. Moreover, to better understand the absolute difference be
tween the ground truth PETs and their synthesized ones, the corre
sponding difference maps have also been illustrated in Fig. 6. 

Since the difference between the synthesized PETs using PA-Net [5] 
were not noticeable compared to JSRL [17] due to their similar per
formance, JSRL, which demonstrated slightly better SSIM, is depicted as 
the representative image-to-image translation architecture from the 
literature. This visual assessment confirms the performance of the 

proposed CycleGAN-MultiG framework to generate diverse PET scans 
that can resemble the ground truth and outperform the state-of-the-art 
competing framework. Therefore, CycleGAN-MultiG has the potential 
to be used for filling missing PETs when MRI is the only available neu
roimage to make a diagnostic decision for a subject. 

4.4. Task-based quality assessment 

Medical images are typically acquired for specific purposes. While 
traditional similarity measures such as SSIM, MAE, and PSNR can pro
vide a decent estimation of the image quality, they may not always be 
aligned with the medical goal of the image. Hence, task-based image 
quality assessment is necessary for medical imaging [76,77]. Some 
studies have demonstrated that some state-of-the-art GANs trained on 
medical image datasets can generate images that appear realistic but 
contain potentially impactful errors [78,79]. Therefore, to safely use 
GANs in medical imaging applications, synthesized images must be 
evaluated based on the specific task they are intended for. In line with 
this, in addition to quantitative and visual assessment of synthesized 
PETs, it is essential to investigate their contribution to improving AD 
diagnosis, which is the primary objective of generating missing PETs in 
the present study. 

To study to which extent these synthesized PETs can help improve 
the performance of AD diagnosis, we investigate an extreme setting. In 
this setting, all the subjects in the test set have synthesized PETs and 
compare it to the AD diagnosis when subjects have real PETs and when 
there is no PET at all. For comparison purposes, the synthesized PETs 
using the implemented JSRL and PA-Net frameworks are also 
investigated. 

Since this study focuses on image-to-image translation, we did not 
design or fine-tune a classifier. Instead, a classifier similar to the 

Fig. 6. Comparison of ground truth PETs and their corresponding Synthesized ones and their absolute difference maps.  
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introduced discriminator network was utilized. However, for the sake of 
simplicity, we removed the multi-scale blocks and modified the last FC 
layer to gain a 3-class classifier (AD vs. MCI vs. NC). The learning rate for 
this network was set to 5e-5 without any scheduler and a batch size of 8 
was considered. To train this network in a five-fold cross-validation, we 
used subjects’ MRIs and real PETs. We also utilized subjects’ age and 
MMSE score which are the most commonly used supplementary infor
mation in AD diagnosis literature, as mentioned in a recent survey [80]. 
The concatenated tensor of MRI, PET, age, and MMSE of each subject 
was the input to this classifier. In the test phase, we utilized this trained 
network to classify unseen test subjects (pairs of MRI and PETs along 
with the subjects’ age and MMSE, as well as MRIs and synthesized PETs 
along with their corresponding age and MMSE). The AD diagnosis per
formance was measured using some well-known metrics: Accuracy, 
Precision, Recall, F1-score, and Area under the receiver operating 
characteristic curve (AUC) [81]. We averaged the corresponding clas
sification metrics obtained for the unseen test regarding these folds as 
presented in Table 4. 

According to Table 4, PET scans can considerably contribute to AD 

diagnosis performance. Considering AUC as the most comprehensive 
metric that is less sensitive to class imbalance [82], using ground truth 
PETs along with MRIs can increase the AUC metric from 0.751 to 0.823. 
Even with synthesized PETs that are generated based on the corre
sponding MRIs, the performance of the AD classifier will increase. Using 
synthesized PETs of the CycleGAN-MultiG framework can enhance the 
value of AUC to 0.818, which is 8.9% higher than the corresponding 
AUC when MRI is the only input to the classifier. However, this table 
indicates that the model performs poorly when trained on a combination 
of synthesized and real data compared to models trained solely on real or 
synthesized PETs. Slight distribution differences between synthetic and 
real data can result in challenges during model training that hinder the 
model’s overall performance when integrating both data types. A similar 
finding is reported in [20]. Furthermore, a comparison between the 
classification performance of our proposed framework, JSRL [17] and 
PA-Net [5] confirms that our framework outperforms these state-of-the- 
art frameworks for image-to-image translation of MRI to PET, which 
results in PET images more closely resembling ground truth PETs. 

5. Discussion 

This section is dedicated to some ablation studies and numerical 
comparisons to figure out the contribution of the proposed GAN’s ele
ments to its superior performance compared to the literature. We con
ducted ablation studies corresponding to the GAN type (BasicGAN or 
CycleGAN), multi-scale inputs, and the proposed loss function. More
over, the impact of different network components and implementation 
details, such as the normalization layer, activation function, dropout, 
and considered stopping criterion are numerically compared. 

5.1. GAN framework ablation study 

To ablate the impact of multi-scale inputs and the CycleGAN, three 
alternative frameworks are implemented in this study: BasicGAN- 
PlainG, where the generator and discriminator lack multi-scale inputs 
and blocks shown in Fig. 7 and 8, resembling a standard GAN; 
BasicGAN-MultiG, featuring a multi-scale generator and discriminator 
in a basic GAN setup; and CycleGAN-PlainG, a CycleGAN variant 
without any consideration for multi-scale inputs. 

To assess computational costs in these GAN frameworks, the number 

Table 4 
Comparison of AD diagnosis using ground truth and synthesized PET (best in 
bold).  

Method Accuracy Precision Recall F1 AUC 

MRI + s* 0.528 0.698 0.528 0.421 0.751 
MRI + 100% real PET + s 0.635 0.681 0.635 0.612 0.823 
MRI + 50% real PET 
+50% synthesized PET 
(JSRL) [17] + s 

0.569 0.678 0.542 0.512 0.765 

MRI + 50% real PET 
+50% synthesized PET 
(PA-Net) [5] + s 

0.572 0.632 0.549 0.517 0.772 

MRI + 50% real PET 
+50% synthesized PET 
(Ours) + s 

0.577 0.641 0.558 0.521 0.781 

MRI + 100% synthesized 
PET (JSRL) [17] + s 

0.592 0.683 0.592 0.534 0.797 

MRI + 100% synthesized 
PET (PA-Net) [5] + s 

0.601 0.675 0.603 0.542 0.802 

MRI + 100%synthesized 
PET (Ours) + s 

0.614 0.681 0.614 0.572 0.818  

* Supplementary information (age and MMSE). 

Fig. 7. 3D generator network (PlainG).  
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of trainable parameters and Multiply–Accumulate (MAC) operations are 
provided in Table 5. The presence of two generators and two discrimi
nators in CycleGAN doubles the trainable parameters. Besides, we also 
report the corresponding metrics for the introduced 3D UNet in [83]. 
This UNet resembles our PlainG with convolution blocks having two 
consecutive convolutions. Like the current study, the entire UNet is the 
generator, and its encoder part acts as the discriminator. Metrics are 
based on a 64 × 64 × 64 input size, providing a fair comparison. Ac
cording to this table, the proposed PlainG and MultiG networks exhibit 
superior computational efficiency compared to the UNet and have 
reasonable trainable parameters and MACs. 

These GAN frameworks are investigated based on PSNR, SSIM, and 
MAE to study the impact of employing different architectures on the 
quality of synthesized images. To ensure a fair comparison, these 
frameworks were fed by the same set of images with the same training 
and validation folds and identical test data. Moreover, to help mitigate 
the impact of randomness in the training process, the five-fold cross- 
validation is repeated twice, and the numerical results for the unseen 
test set are recorded. According to the mean and standard deviation (std) 

values given in Table 6, CycleGAN-MultiG has generated the most 
similar PETs, on average, regarding SSIM and MAE measures, but not 
PSNR. Different studies focused on investigating similarity measures for 
medical image applications have argued that MSE and PSNR, which is 
also based on MSE, are not able to provide a good measure in terms of 
the image features [84,85]. In medical applications, it has been studied 
that the image of higher PSNR value may look worse than that of lower 
value [86], and utilizing SSIM, which more closely resembles human 
visual perception, was proposed instead. 

Focusing on SSIM as the primary metric, Fig. 9 depicts the distri
butions of the SSIM values obtained from the various GANs, presented as 
violin plots. The results indicate that CycleGAN-MultiG achieved a 
slightly better median compared to the other frameworks. Notably, 
CycleGAN-MultiG exhibits a more favorable distribution, although 

Fig. 8. 3D discriminator network (PlainD).  

Table 5 
Computational efficiency of different GAN frameworks.  

Architecture No. of Trainable Parameters (×106) No. of MACs (×109) 

Generator(s) Discriminator(s) Total Generator(s) Discriminator(s) Total 

BasicGAN-UNet [83] 16.313 7.319 23.632 236.701 33.747 270.448 
BasicGAN-PlainG 8.234 0.904 9.138 48.025 1.727 49.752 
BasicGAN-MultiG 8.245 0.907 9.152 54.925 2.334 57.259 
CycleGAN-UNet [83] 32.626 14.638 47.264 473.402 67.494 540.896 
CycleGAN-PlainG 16.468 1.808 18.276 96.050 3.454 99.504 
CycleGAN-MultiG 16.490 1.814 18.304 109.850 4.668 115.518  

Table 6 
Quality comparison of the synthesized PETs using different architectures (best in 
bold).  

Method PSNR (mean ±
std) 

SSIM (mean ±
std) 

MAE (mean ±
std) 

BasicGAN-PlainG 27.314 ± 0.104 0.7981 ± 3.7e-3 0.02803 ± 2.4e-4 
BasicGAN- 

MultiG 
27.434 ± 0.184 0.7994 ± 2.4e-3 0.02792 ± 2.6e-4 

CycleGAN- 
PlainG 

27.287 ± 0.074 0.7994 ± 2.4e-3 0.02796 ± 2.0e-4 

CycleGAN- 
MultiG 

27.251 ± 0.093 0.7997 ± 2.9e-3 0.02791 ± 2.7e- 
4  

Fig. 9. Comparison of obtained SSIM distributions using different GANs.  
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CycleGAN-PlainG also performs well. Regarding SSIM distribution, 
CycleGAN-MultiG reveals a longer but very thin tail for smaller SSIM 
values. Assuming this extended tail is not attributed to an outlier, there 
are relatively fewer instances where the SSIM is lower than CycleGAN- 
PlainG. Conversely, it displays a substantial concentration of data 
points with higher SSIM values, which is desirable. Overall, these find
ings suggest that CycleGAN-MultiG generally outperforms CycleGAN- 
PlainG in terms of SSIM. However, it is worth mentioning that due to 
a larger number of MACs and slightly more trainable parameters, 
selecting the optimal choice among them needs an investigation into the 
trade-off between computational cost and the quality of generated 
images. 

5.2. Loss function ablation study 

In the second ablation study, we investigate the impact of the pro
posed similarity loss term by setting its weight in Eq. 10 to zero while 
maintaining other weights, parameters, and implementation details. 
This transforms the loss function into a standard CycleGAN loss 
comprising adversarial, identity, and cycle-consistency components. 
Fig. 10 depicts the average similarity metric values for the unseen test 
set. The inclusion of the similarity term noticeably influences the quality 
of synthesized PETs across all metrics. Specifically, the average PSNR for 
the test set increases by 8.2% from 25.19 to 27.27, SSIM improves by 
9.8% from 0.728 to 0.800, and MAE decreases by 17.01% from 0.0335 

Fig. 10. Comparing the impact of the proposed loss function on the quality of synthesized PETs.  

Fig. 11. Comparing the impact of different stop criterion on the quality of synthesized PETs.  
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to 0.0278. These results underscore the significant contribution of the 
proposed loss function to enhancing the quality of synthesized PETs, 
indicating a substantial impact on the overall framework performance. 

5.3. Stopping criterion 

Training GANs is inherently challenging due to the dynamic 
competition between generators and discriminators. The delicate bal
ance between the two is crucial for realistic data generation, making it 
difficult to establish a clear stopping point for training. While visual 
inspection suffices for non-medical applications, it becomes impractical 
for medical imaging. Most studies commonly employ a maximum epoch 
number as a stopping criterion, as observed in [6]. Introducing novel 
metrics to be used as a stop criterion is also considered in the literature, 
especially for segmentation [87–89]. To understand how different stop 
criteria impact the quality of synthesized images in the current study, 
three stop criteria, i.e., discriminator loss, generator loss, and generator 
similarity loss, are investigated. Fig. 11 presents different similarity 
measures for the unseen test set. It is worth noting that for CycleGAN, 
the corresponding losses of GPET and DPET are considered in this 
investigation. 

Based on these results, LD appears to be less favorable as a stop 
criterion. However, to check for a statistically significant difference 
Wilcoxon rank-signed test is used. The corresponding p-values of this 
test are given in Table 7. According to this table, for all similarity 
measures (PSNR, SSIM, and MAE), we can reject the null hypothesis at a 
confidence level of 5% for comparison of LSim vs. LD and LG vs. LD. So, 
using LSim and LG over LSim as a stop criterion would make a difference. 
On the other hand, based on the corresponding p-values, the null hy
pothesis of LSim vs. LG cannot be rejected for any of the similarity 

measures, suggesting no statistically significant difference in the syn
thesized image’s quality. In the current study, LSim is used for our ex
periments in this study. 

5.4. Normalization layer 

Normalization layers are the most widely used components in deep 
networks, and utilizing them can accelerate the training and boost 
performance. This normalization can be applied at batch, channel, or 
instance levels [90]. While batch normalization is a common choice in 
many studies [25,42,91], it has been shown that batch normalization 
can induce vulnerability to models and decrease the model robustness, 
especially in medical images [92]. To investigate the impact of 
normalization type, we replaced all Instance Normalization layers with 
Batch Normalization ones in the proposed framework, resulting in the 
box plots illustrated in Fig. 12. Although this plot represents the superior 
performance of Instance Normalization, a statistical test can confirm it. 
To do so, two Wilcoxon rank-signed tests are conducted, and their p- 
values are gathered in Table 8. According to this table, the null hy
pothesis, Instance Normalization equals Batch Normalization, would be 
rejected at a confidence level of 5%. Based on the p-values provided in 
the second column, the null hypothesis can be rejected at a confidence 
level of 5% in favor of the alternative hypothesis. So, Instance 
Normalization works better than Batch Normalization regarding all the 
similarity measures, i.e., PSNR, SSIM, and MAE. 

5.5. Activation function 

The rectified linear activation function (ReLU) is a function that 
outputs the input if it is positive and zero in case it is negative. A 

Table 7 
P-values of testing the hypothesis if there is a difference in the quality of syn
thesized PETs using different stop criterion(statistically significant at 5% con
fidence level are bold).   

LSim vs. LG LSim vs. LD LG vs. LD 

PSNR 0.36827 5.722e-06 1.907e-06 
SSIM 0.31179 2.670e-05 1.335e-4 
MAE 0.08969 1.335e-4 4.768e-05  

Fig. 12. Comparing the impact of employed normalization type on the quality of synthesized PETs.  

Table 8 
P-values of testing the hypothesis corresponds to employed normalization type.  

Similarity 
Measure 

H0: Instance equals Batch H1: 
Instance Not equals Batch 

H0: Instance equals Batch H1: 
Instance Better than Batch 

PSNR 1.301e-4 2.613e-4 
SSIM 6.675e-6 1.335e-5 
MAE 9.536e-7 1.907e-6  
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modified ReLU called LeakyReLU allows small negative values by 
introducing a slight slope that should be tuned. To skip the tuning step, 
Parametric ReLU (PReLU), given in eq. 14, was introduced [93] in which 
the slope is learned through training the deep network. Despite the 
introduction of PReLU in 2015, almost all of the employed deep archi
tectures, especially for medical applications, use the LeakyReLU acti
vation function, frequently with a slope equal to 0.2. In the few studies 
utilizing PReLU, performance improvement compared to ReLU or Lea
kyReLU has been obtained [94]. To assess the impact of activation 
functions on synthesized PET quality, we replaced all PReLU activations 
in our proposed frameworks first with LeakyReLU(0.2) and then with 
ReLU. Mean and standard deviation values for PSNR, SSIM, and MAE are 

Table 9 
Mean and standard deviation of the similarity measures corresponds to different 
activation functions (best in bold).  

Activation 
Function 

PSNR (mean ±
std) 

SSIM (mean ±
std) 

MAE (mean ±
std) 

PReLU 27.3337 ±
0.1426 

0.79936 ±
0.0027 

0.02791 ±
0.0002 

LeakyReLU(0.2) 27.2719 ±
0.0857 

0.79820 ±
0.0022 

0.02800 ±
0.0001 

ReLU 27.3167 ±
0.1363 

0.79910 ±
0.0025 

0.02795 ±
0.0002  

Fig. 13. Comparing the impact of activation function on the quality of synthesized PETs.  

Fig. 14. Comparing the impact of dropout on the quality of synthesized PETs.  
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presented in Table 9. According to this table, PReLU outperformed 
LeakyReLU(0.2) and ReLU, although ReLU resulted in very close values 
to PReLU. Fig. 13 illustrates these results, indicating the optimum 
slope’s value obtained during training is smaller than 0.2 but very close 
to zero, which makes it almost equivalent to ReLU. Consequently, uti
lizing PReLU over LeakyReLU or ReLU is crucial for the framework to 
optimize this negative slope effectively based on the data. 

PReLU(x) = max(0, x) + a×min(0, x) (14)  

5.6. Dropout 

Over-fitting is a common pitfall in which AI models capture noise or 
superficial information rather than genuinely distinguishing features 
[95]. Data scarcity can increase the risk of over-fitting due to the huge 
number of network parameters compared to the number of training data 
[54], especially in medical image applications with 3D inputs and 
limited labeled data. Dropout, introduced in [96], is one of the known 
methods to prevent over-fitting. The key idea behind dropout is 
randomly dropping some neurons and their corresponding connections 
during training to avoid excessive co-adaptation [96]. 

In the current study with a limited number of paired MRI-PET sam
ples, we employed several dropouts in the proposed framework. For the 
generator, the multi-scale blocks have an embedded dropout layer, and 
we also apply dropout after pooling operations. For the discriminator, 
FC layers are followed by dropouts in addition to the mentioned drop
outs for the generator. A common dropout rate of 0.5 [28] is used in our 
study. To investigate the impact of dropout on synthesized PET quality, 
we repeat our experiments by setting this rate equal to zero, indicating 
no dropout usage in the entire framework. Fig. 14 illustrates the corre
sponding numerical results for PSNR, SSIM, and MAE metrics. According 
to this figure, applying a drop rate of 0.5 can increase the quality of 
synthesized PETs. To check for a statistically significant difference in 
employing dropout, we conducted a Wilcoxon rank-signed test, hy
pothesizing that dropout improves results (higher PSNR and SSIM, lower 
MAE) compared to no dropout. The corresponding p-values testing this 
hypothesis are 2.24e-4, 8.39e-5, and 0.041 for PSNR, SSIM, and MAE, 
respectively. So, the null hypothesis of having equal medians will be 
rejected, supporting the conclusion that applying dropouts for multi- 
scale blocks, FC layers, and after pooling operations in this study leads 
to improved synthesized PET quality. 

6. Conclusion 

This Study proposed a 3D multi-scale image-to-image CycleGAN 
framework to generate synthesized PETs from MRIs to fill missing PETs 
and help better diagnose AD using real MRIs and synthesized PETs. 
Feeding this framework by different scales of the input MRI, employing 
convolution blocks having two consecutive convolution operations, 
applying multiple dropouts, and using skip connections, enabled this 
framework to reach an effective mapping between MRI and PET do
mains. In addition, to push the framework to generate more similar and 
realistic functional PETs from structural MRIs, a hybrid loss function was 
proposed to enforce the structural similarity while preserving the voxel- 
wise similarity and avoiding generating blurry images. The quality as
sessments of these PET quantitatively and visually confirmed the supe
rior performance of the proposed framework compared to the state-of- 
the-art methods in the literature. Moreover, according to the numeri
cal results obtained for the ternary classification of AD subjects (AD vs. 
MCI vs. NC), these synthesized PETs can help improve AD diagnosis. 
Specifically, assuming an extreme case where none of the subjects has a 
PET, feeding the classifier with MRIs and their corresponding synthe
sized PETs reached a more accurate diagnosis than feeding the classifier 
with just available MRIs. Conducted ablation investigation regarding the 
proposed GAN framework as well as the proposed loss function unravels 
their contribution to the quality of generated PETs. Accordingly, it was 

shown that using a stopping criterion based on the generator’s loss over 
the discriminator’s, applying instance normalization instead of batch 
normalization, utilizing parametric ReLU rather than LeakyReLU or 
ReLU, and appropriate use of dropout can considerably boost the quality 
of synthesized PETs. 

While the primary application focuses on synthesizing PET images 
from MRIs for AD diagnosis, the design of the framework and the 
modified loss function in the current study have the potential to extend 
to some other medical imaging domain translation scenarios due to 
some shared patterns and characteristics across different modalities. 
Although the outstanding performance of this framework for a complex 
task of mapping structural to functional domain shows its potential for 
some less complicated tasks such as low-dose to high-dose mapping of 
PETs, low-resolution to high-resolution translation of CTs, or converting 
different structural MRIs to each other, extended experiments are 
needed to fully validate this potential. So, a future research direction is 
employing this framework for other types of image translation to assess 
its performance for other tasks. On the other hand, since employing the 
proposed loss term to measure the similarity of translated images to their 
ground truth caused a considerable quality improvement according to 
the provided discussion, it seems that utilizing it along with common 
CycleGAN losses, adversarial loss, cycle-consistency loss, and identity 
loss), would boost the performance of CycleGANs for different applica
tions. As a future study, it is of great interest to investigate the impact of 
this proposed loss function on the performance of CycleGAN-based 
frameworks previously studied in the literature. In the current study, 
we faced computational limitations for embedding a classifier in the 
proposed GAN framework. However, developing the current framework 
into a more comprehensive one, integrating missing modality genera
tion and diagnosis can be another direction for future studies. 
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